
Statistics 210A Lecture 21 Notes

Daniel Raban

November 4, 2021

1 Maximum Likelihood Estimation and Asymptotic Efficiency

1.1 Recap: Convergence in probability and distribution

Last time we introduced notions of convergence. We had

• Convergence in probability:

Xn
p−→ c if P(‖Xn − c‖ > ε)→ 0 ∀ε > 0.

• Convergence in distribution (sometimes called weak convergence1):

Xn =⇒ X if E[f(Xn)]→ E[f(X)] ∀ bounded, continuous f.

If Xn, X ∈ R, then Xn =⇒ X if and only if Fn(x) → F (x) for all x where F is
continuous at x, where Fn(x) = P(Xn ≤ x) and F (x) = P(X ≤ x).

We had a few theorems will allow us to extend convergence to more random variables:

Theorem 1.1 (Continuous mapping). If f is continuous,

Xn → pX =⇒ f(Xn)
p−→ f(X), Xn → DX =⇒ f(Xn)

D−→ f(X).

Theorem 1.2 (Slutsky). If Xn =⇒ X and Yn =⇒ c, then

Xn + Yn =⇒ X + c, Xn · Yn =⇒ cX, Xn/Yn =⇒ X/c (c 6= 0),

Theorem 1.3 (Delta method). Suppose g(n)(Xn − µ) =⇒ Nd(0,Σ), where g(n) → ∞.
Then for f : Rd → Rk, where

Df(x) =

− ∇f1(x)> −
...

− ∇fk(x)> −


exists and is continuous at µ, then g(n)(f(Xn)− f(µ)) =⇒ Nk(0, Df(µ)ΣDf(µ)>).

1The real reason this is called weak convergence is that it corresponds to convergence of the distribution
measures in a weak topology on BC(Rn)∗, the dual space of the bounded continuous functions on Rn.
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1.2 Maximum likelihood estimators

Definition 1.1. Let P = {Pθ : θ ∈ Θ} be a dominated family with densities pθ for Pθ
with respect to µ. The maximum likelihood estimator (MLE) is

θ̂MLE(X) = arg max
θ∈Θ

pθ(X)

= arg max
θ∈Θ

`(θ;X).

If we are worried about whether this exists, i.e. if the maximum is achieved, we can
just take some ε tolerance instead. For now, we won’t worry about that.

Remark 1.1. This is invariant to parametrization. If we have two different parameteriza-
tions θ and η(θ), then η̂MLE = η(θ̂MLE). This is not the case for, for example, the UMVU
estimator.

Example 1.1. Let pη(x) = eη
>T (x)−A(η)h(x). The log likelihood is

`(η;x) = η>T (x)−A(η) + log h(x),

so

∇`(η;X) = T (X)−∇A(η)

= T (X)− Eη[T (X)].

Note that ∇` is concave. If we set it equal to 0, we get something like a method of moments
estimator.

η̂MLE solves T (X) = Eη̂[T (X)].

Let µ = ψ(η) = ∇A. Then η̂ = ψ−1(T (X)).

Example 1.2. Let Xi
iid∼ eηT (x)−A(η)h(x) with η ∈ Ξ ⊆ R. Then

η̂ = ψ−1(T ), T =
1

n

n∑
i=1

T (Xi).

Assume η ∈ Ξo and ψ̇(η) = Ä(η) > 0. Then ψ−1 is continuous, so

d

dµ
ψ−1(µ) =

1

ψ̇(ψ−1(µ))
=

1

Ä(η)
.

By the law of large numbers, T
pη−→ µ. Here, we write pη to emphasize that this convergence

depends on η. So the continuous mapping theorem gives consistency: ψ−1(T )
pη−→ η.
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The central limit theorem gives

√
n(T − µ) =⇒ N(0,Varη T (X1)) = N(0, Ä(η)),

where the Fisher information is Jη1 (µ) = Ä(µ)−1. The delta method gives

√
n(η̂ − η) =

√
(ψ−1(T )− η) =⇒ N(0, 1

Ä(η)2
Ä(η)) = N(0, Ä(η)−1).

Recall that Jη1 (µ) = Varη(T (X1)) = Ä(η). Asymptotically, η̂ is unbiased and achieves the
Cramér-Rao lower bound because Jηn(η) = nÄ(η).

What do we mean by asymptotically unbiased?

Example 1.3. Let X1, . . . , Xn
iid∼ Pois(θ) = θxe−θ

x! , and let η = log θ. Then η̂ = logX. The
central limit theorem says (X − θ) =⇒ N(0, θ), so the delta method tells us that

√
n(η̂ − η) =

√
n(logX − log θ) =⇒ N(0, 1

θ2
θ) = N(0, θ−1).

What if X = 0? In fact, η̂ has bias −∞ and infinite variance, so the bias does not converge
to 0. What we mean by asymptotically unbiased is that the scaled limiting distribution
has no bias.

If you are a glass half-empty person, you might say that we can never use η̂, since it
will always have infinite mean squared error. But if you are a glass half-full person, you
might say that

Pη(X = 0) = Pθ(X1 = 0)n = e−nθ,

which is an exponentially decaying probability of anything bad happening.

Proposition 1.1. If Xn =⇒ X, Zn is arbitrary, and Bn is an event such that P(Bn)→ 0,
then

Xn1Bcn + Zn1Bn =⇒ X.

Proof. Observe that Zn
p−→ 0:

P(‖Zn1Bn‖ > ε) ≤ P(‖1Bn‖ > ε)→ 0.

So Zn1Bn
p−→ 0. Since 1Bcn

p−→ 1, use Slutsky’s theorem to get the result.

1.3 Asymptotic efficiency

Let X1, . . . , Xn
iid∼ pθ(x) with θ ∈ Rd. Assume that pθ is “smooth” in θ, e.g. it has 2

continuous integrable derivatives. Let

`1(θ;Xi) = log pθ(Xi), `n(θ,X) =

n∑
i=1

`1(θ;Xi).
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Recall the Fisher information for a single observation is

H1(θ) = Varθ(∇`1(θ;Xi)).

The likelihood ratio, which captures everything about the data, looks like

Lik(θ + δ;X)

Lik(θ;X)
= log(`n(θ + δ)− `n(θ)) ≈ log(δ>∇`n(θ)).

The Fisher information for n observations is

Jn(θ) = Varθ(∇`n(θ;X)) = nJ1(θ).

Recall that E[∇`1(θ)] = 0.

Definition 1.2. An estimator θ̂n is asymptotically efficient if

√
n(θ̂n − θ)

Pθ=⇒ N(0, J1(θ)−1).

Really this is a sequence of estimators converging, but this is usually understood from
context. For continuously differentiable g(θ) : Rd → R,

√
n(g(θ̂n)− g(θ)) =⇒ N(0,∇g(θ)>J1(θ)−1∇g(θ)).

You may recognize this as the Cramér-Rao lower bound.
Let θ0 be the true value, and let θ be a generic value of the parameter. We will maximize

`n(θ;X) by setting ∇`n(θ̂MLE) = 0. We know ∇`1(θ0;Xi)
iid∼ (0, J1(θ0)), so by the central

limit theorem,

1√
n
∇`n(θ0;X) =

√
n

1

n

n∑
i=1

∇`1(θ0, Xi) =⇒ N(0, J1(θ0)).

Now calculate the second derivative: Using the law of large numbers,

1

n
∇2`n(θ0, X)

p−→ Eθ0 [∇2`(θ0;Xi)] = −J1(θ).

Here is an informal proof of why the MLE should be asymptotically efficient.

Proof. Assume
0 = ∇`n(θ̂n;X) = ∇`n(θ0) +∇2`n(θ0)(θ̂n − θ),

using a Taylor expansion. Then√
(θ̂n − θ0) ≈

(
− 1

n
∇2`n(θ0)

)−1

︸ ︷︷ ︸
p−→J1(θ0)−1

(
1√
n
∇`n(θ0)

)
︸ ︷︷ ︸

=⇒ N(0,J1(θ0))

=⇒ N(0, J1(θ0)−1),

which gives asymptotic efficiency.
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What’s missing from this proof? To do our Taylor expansion, we need to first show
that θ̂n is close to θ0; that is, we want to show consistency: θ̂n

p−→ θ0.
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