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1 Maximum Likelihood Estimation and Asymptotic Efficiency

1.1 Recap: Convergence in probability and distribution
Last time we introduced notions of convergence. We had
e Convergence in probability:

X, Be if P(|X,—¢|>e)—0 Ve>O0.

e Convergence in distribution (sometimes called weak convergence'):
X, = X if E[f(X,)] — E[f(X)] V bounded, continuous f.
If X,,,X € R, then X,, = X if and only if F,,(z) — F(x) for all  where F is

continuous at x, where F),(z) = P(X,, < z) and F(z) = P(X < z).
We had a few theorems will allow us to extend convergence to more random variables:

Theorem 1.1 (Continuous mapping). If f is continuous,
X, = pX = f(Xn) D f(X), X,— DX = f(X,) > f(X).
Theorem 1.2 (Slutsky). If X,, = X andY,, = c, then
X, +Y, = X+ec, X, Y, = cX, X,/ Y, = X/c (c#0),

Theorem 1.3 (Delta method). Suppose g(n)(X,, —pn) = Ng(0,%), where g(n) — oo.
Then for f: R — R* where
— Vfi(x)" -
Df(x) = :
— Vir@)" -
exists and is continuous at u, then g(n)(f(X,) — f(p)) = Nx(0,Df()EDf(u)").

!The real reason this is called weak convergence is that it corresponds to convergence of the distribution
measures in a weak topology on BC(R™)*, the dual space of the bounded continuous functions on R™.




1.2 Maximum likelihood estimators
Definition 1.1. Let P = {Py : § € ©} be a dominated family with densities py for P
with respect to . The maximum likelihood estimator (MLE) is

9MLE(X) = argmax pg(X)
fco

= argmax ((6; X).
0cO

If we are worried about whether this exists, i.e. if the maximum is achieved, we can
just take some € tolerance instead. For now, we won’t worry about that.

Remark 1.1. This is invariant to parametrization. If we have two different parameteriza-
tions 6 and (@), then Myre = n(fmre). This is not the case for, for example, the UMVU
estimator.

Example 1.1. Let p,(z) = e"TT(”")_A(”)h(az). The log likelihood is
U(n;x) =" T(x) — A(n) +log h(z),
SO

Vi(n; X) =T(X) — VA(n)
= T(X) = E,[T(X)].
Note that V/ is concave. If we set it equal to 0, we get something like a method of moments

estimator.
nvLe solves T(X)=E

Let =1 (n) = VA. Then 7§ = v~ HT(X)).

[T(X)].

n

Example 1.2. Let X; S "M@ =AM p () with n € Z C R. Then

F=y @), T=- S T(X),
=1

Assume 7 € Z° and () = A(n) > 0. Then ¢~ is continuous, so

By the law of large numbers, T' LN w. Here, we write p, to emphasize that this convergence

depends on 7. So the continuous mapping theorem gives consistency: ¢~1(T) Pn, 7.



The central limit theorem gives

V(T — i) = N(0,Var, T(X1)) = N(0, A(n)),

where the Fisher information is J{'(u) = A(u)~!. The delta method gives

V(i —n) = V@D —n) = N, 353400) = N0, A@n)™).

Recall that J)'(u) = Var,(T(X1)) = A(n). Asymptotically, 7j is unbiased and achieves the
Cramér-Rao lower bound because J;1 (1) = nA(n).

What do we mean by asymptotically unbiased?

Example 1.3. Let Xq,..., X, i Pois(0) = 926_6, and let n = log#. Then 7 = log X. The

z!

central limit theorem says (X —6) = N(0,6), so the delta method tells us that

\/ﬁ(ﬁ_ 77) = \/ﬁ(logY - log 9) = N<O7 9%‘% = N(()?H_l)'

What if X = 0? In fact, i) has bias —oco and infinite variance, so the bias does not converge
to 0. What we mean by asymptotically unbiased is that the scaled limiting distribution
has no bias.

If you are a glass half-empty person, you might say that we can never use 7), since it
will always have infinite mean squared error. But if you are a glass half-full person, you
might say that

P,(X =0) =Pp(X; =0)" =",

which is an exponentially decaying probability of anything bad happening.

Proposition 1.1. If X,, = X, Z, is arbitrary, and B, is an event such that P(B,) — 0,
then
Xn]leb —i—Zn]an = X.

Proof. Observe that Z, 20

P(||Zn1B, || > ) <P(|[1p,[ > &) = 0.
So Z,1p, 2, 0. Since 1pe 2, 1, use Slutsky’s theorem to get the result. O
1.3 Asymptotic efficiency

Let Xq,..., X, id po(z) with & € R?  Assume that py is “smooth” in 6, e.g. it has 2

continuous integrable derivatives. Let

00 X;) =logpe(Xs), a0, X) =) £1(6; X;).
i=1
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Recall the Fisher information for a single observation is
Hy(0) = Varg(VE1(6; X)).
The likelihood ratio, which captures everything about the data, looks like

W =log(£n (0 + 6) — £,(0)) = log(5 ' V,()).
The Fisher information for n observations is

Jn(0) = Varg(Ve,(0; X)) = nJy (6).
Recall that E[V/¢1(0)] = 0.

Definition 1.2. An estimator §n is asymptotically efficient if
Vi, —6) =% N0, (0)7).

Really this is a sequence of estimators converging, but this is usually understood from
context. For continuously differentiable g(#) : R — R,

Vi(g(8n) — 9(8)) = N(0,Vg(0) " 11(6) ' Vg(8)).

You may recognize this as the Cramér-Rao lower bound.
Let 6y be the true value, and let 6 be a generic value of the parameter. We will maximize

0,(0; X) by setting Vﬁn(é\MLE) = 0. We know V/;(6o; X;) Y (0, J1(6p)), so by the central
limit theorem,

\}HV&L(GO,X) = \/E%ZV&(GO,XZ) - N(O,Jl(go)).
=1

Now calculate the second derivative: Using the law of large numbers,
1 o2 P 20000 XY —
EV €n(90, X) — Ego[v E(Qo, Xz)] = —Jl(e).
Here is an informal proof of why the MLE should be asymptotically efficient.

Proof. Assume R R
0=Vl (0n; X) = Vi (60o) + V2, (60) (6, — 6),

using a Taylor expansion. Then

SO — 09) ~ <—;v2£n(eo)>_1 Qﬁwn(eo)> s N(O,1(60)7Y),

ﬂ>Jl(90)_1 — N(O,Jl(eo))

which gives asymptotic efficiency. O



What’s missing from this proof? To do our Taylor expansion, we need to first show
that On is close to fy; that is, we want to show consistency: 9 LN 0.

//l é"(eo) - Scolfe

/'/

Y N - e an(G)
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